The Copper(II)-catalysed Hydrolysis of Histidine Methyl Ester

By R. W. HAY and P. J. MORRIS

(Department of Chemistry, Victoria University of Wellington, Wellington, New Zealand)

A NUMBER of kinetic investigations have been made of the transition-metal ion catalysed hydrolysis of histidine methyl ester.¹⁻³ Interpretation of the results has been complicated by the uncertain nature of the labile metal complexes in solution. Conley and Martin² followed the hydrolysis by a pH-stat method and determined reaction rates from the initial slope of the pH-stat trace of base added against time (the "initial rate method"). The results obtained by Kelly³ indicated that under certain conditions consecutive reactions could occur which would invalidate Conley and Martin's analysis. We have therefore re-investigated the reaction and have confirmed Kelly's findings.

The thermodynamic acid ionisation constants of histidine methyl ester (I), determined potentiometrically at 25° are $pK_1 = 5.01$ and $pK_2 = 7.23$.

The formation constants for the copper(II) complexes, where $K_3 = [CuE^{2+}]/[Cu^{2+}][E]$ and $K_4 = [CuE_2^{2+}]/[CuE^{2+}][E]$ and E is the free ester, are $\log_{10}K_3=8{\cdot}55$ and $\log_{10}K_4=5{\cdot}97$ at $I=0{\cdot}1{\rm M}$ and $25^{\circ}.$

In solutions containing copper(II) and histidine methyl ester in a 1:2 metal-ligand ratio, the formation constants show that the concentration of free copper(II), CuE²⁺ (II) and free ester (E) are small compared with CuE₂²⁺. The kinetics of alkaline hydrolysis of this system in the pH range 7.5—8.6 followed by a pH-stat are consistent with a kinetic scheme involving two consecutive second order processes (*pseudo*-first order at constant pH),

$$CuE_{2}^{2+} + OH^{-} \xrightarrow{k_{1}} CuEA^{+} + MeOH$$
$$CuEA^{+} + OH^{-} \xrightarrow{k_{2}} CuA_{2} + MeOH$$

where E is histidine methyl ester and A^- is the carboxylate anion of histidine. The rate constants k_1 and k_2 are readily evaluated by the time ratio method⁴ (see Table).

In solutions containing a 1:1 metal to ester ratio, hydrolysis occurs with *pseudo*-first-order kinetics at constant pH. In contrast to the 1:2 case, $k_{obs}/[OH^-]$ is pH-dependant. Potentiometric measurements show that this effect is due to the presence of two hydrolytically active species, the 1:1 complex CuE²⁺ and the monohydroxycomplex CuEOH⁺. For such a system a plot of $(k_{obs}/[OH^-])([H^+]/K_a + 1)$ against $[H^+]/K_a$ will be linear of slope $k(CuE^{2+})$ and intercept $k(CuEOH^{+})$ where $pK_a = 6.91$ is the ionisation constant for the equilibrium $CuE(OH_2)_2^{2+} \rightleftharpoons CuE(OH)(OH_2)^+ + H^+$ Values of the two rate constants were obtained from such a plot which showed excellent linearity (see Table). The monoprotonated form of the ester hydrolyses ca. 100 times faster than the free ester and the bis-complex CuE22+ ca. 500 times faster than the free ester. The ratio $k(CuE_2^{2+})/k(CuE^{2+})$ is close to the expected statistical value of 2. The species CuE₂²⁺ and CuE²⁺ carrying dipositive charges hydrolyse faster than the species CuEA+ and CuEOH+ carrying unit positive charges. Similar observations on the effect of charge on the basic hydrolysis of esters have been previously

noted. For example the betaine $Et_3^+NCH_2 \cdot CO_2Et$ hydrolyses 200 times faster than ethyl acetate⁵ and 38 times faster than ethyl glycinate.⁶

We conclude, as did Conley and Martin, that in the case of the metal-ion catalysed hydrolysis of esters in which there is no interaction between the metal ion and the labile ester group that catalysis is mainly due to electrostatic effects.

TABLE

Reaction	$k(M^{-1} \min$	1. ⁻¹)*
$E + OH^- \rightarrow A^- + CH_3OH$	$3.7 \times$	101
$EH^+ + OH^- \rightarrow A^- + CH_3OH$	$4.0 \times 1.07 \times 1.07 \times 1007 \times 1$	10 ³ 104
$CuEA^+ + OH^- \rightarrow CuA_2 + CH_3OH$	$2.56 \times$	103
$CuE^{2+} + OH^{-} \rightarrow CuA^{+} + CH_{3}OH$	$1.06 \times$	104
$CuEOH^+ + OH^- \rightarrow CuAOH + CH_3OH$	$12.02 \times$	102

* At 25° and I = 0.1 M.

(Received, November 15th, 1966; Com. 896.)

- ¹ N. C. Li, B. E. Doody, and J. M. White, J. Amer. Chem. Soc., 1957, 79, 5859. ² H. L. Conley and R. B. Martin, J. Phys. Chem., 1965, 69, 2923. ³ T. R. Kelly, Ph.D. Thesis, University of Glasgow, 1962.

- G. Swain, J. Amer. Chem. Soc., 1944, 66, 1696.
 R. P. Bell and F. J. Lindars, J. Chem. Soc., 1954, 4601.
 R. W. Hay, L. J. Porter and P. J. Morris, Austral. J. Chem., 1966, 19, 1197.