The Copper(I1)-catalysed Hydrolysis of Histidine Methyl Ester

By R. W. HAY and P. J. MORRIS

(Department of Chemistry, Victoria University *of* Wellington, Wellington, New Zealand)

A **NUMBER** of kinetic investigations have been made of the transition-metal ion catalysed hydrolysis of histidine methyl ester. $1-3$ Interpretation of the results has been complicated by the uncertain nature of the labile metal complexes in solution. Conley and Martin2 followed the hydrolysis by a pH-stat method and determined reaction rates from the initial slope of the pH-stat trace of base added against time (the "initial rate method"). The results obtained by Kelly³ indicated that under certain conditions consecutive reactions could occur which would invalidate Conley and Martin's analysis. We have therefore re-investigated the reaction and have confirmed Kelly's findings.

The thermodynamic acid ionisation constants of histidine methyl ester (I), determined potentiometrically at 25° are $pK_1 = 5.01$ and $pK_2 = 7.23$.

The formation constants for the copper(I1) complexes, where $K_3 = \frac{[CuE^{2+}]}{[Cu^{2+}][E]}$ and $K_4 =$ $[CuE₂²⁺]/[CuE²⁺][E]$ and E is the free ester, are $\log_{10} K_3 = 8.55$ and $\log_{10} K_4 = 5.97$ at $I = 0.1$ M and **25".**

In solutions containing copper(II) and histidine methyl ester in a **1 :2** metal-ligand ratio, the formation constants show that the concentration of free copper(II), CuE^{2+} (II) and free ester (E) are small compared with $CuE₂²⁺$. The kinetics of alkaline hydrolysis of this system in the pH range alkaline hydrolysis of this system in the pH range

7.5-8.6 followed by a pH-stat are consistent with

a kinetic scheme involving two consecutive second

order processes (*pseudo*-first order at constant pH),
 $CuE_2^{2+} + OH$ a kinetic scheme involving two consecutive second

a kinetic scheme involving two consecutive second order processes (*pseudo*-first order at constant pH),\n
$$
CuE_2^{2+} + OH^- \xrightarrow{k_1} CuEA^+ + MeOH
$$
\n
$$
CuEA^+ + OH^- \xrightarrow{k_2} CuA_2 + MeOH
$$

where E is histidine methyl ester and **A-** is the carboxylate anion of histidine. The rate constants k_1 and k_2 are readily evaluated by the time ratio method4 (see Table).

In solutions containing a **1: 1** metal to ester ratio, hydrolysis occurs with pseudo-first-order kinetics at constant pH. In contrast to the $1:2$ case. k_{obs} /[OH⁻] is pH-dependant. Potentiocase, $k_{obs}/[OH^-]$ is pH-dependant. metric measurements show that this effect is due to the presence of two hydrolytically active species, the **1 :1** complex CuE2+ and the monohydroxycomplex CUEOH+. For such a system a plot of $(k_{obs}/[OH^-])([H^+] / K_a + 1)$ against $[H^+] / K_a$ will be linear of slope *k* (CuE2 +) and intercept *k* (CUEOH+) where $pK_a = 6.91$ is the ionisation constant for the equilibrium $CuE(OH_2)_2^{2+} \rightleftharpoons CuE(OH)(OH_2)^+ + H^+$ Values of the two rate constants were obtained **from** such a plot which showed excellent linearity (see Table). The monoprotonated form of the ester hydrolyses *ca.* **100** times faster than the free ester and the bis-complex CuE_{2}^{2+} *ca.* 500 times faster than the free ester. The ratio k (CuE₂²⁺)/ k (CuE²⁺) is close to the expected statistical value of *2.* The species CuE_2^{2+} and CuE^{2+} carrying dipositive charges hydrolyse faster than the species CuEA+ and CUEOH+ carrying unit positive charges. Similar observations on the effect of charge on the basic hydrolysis of esters have been previously

noted. For example the betaine $Et_3NCH_2CO_2Et$ hydrolyses **200** times faster than ethyl acetates and 38 times faster than ethyl glycinate.⁶

We conclude, **as** did Conley and Martin, that in the case of the metal-ion catalysed hydrolysis of esters in which there is no interaction between the metal ion and the labile ester group that catalysis is mainly due to electrostatic effects.

TABLE

 $*$ At 25° and $I = 0.1$ M.

(Received, November **15th, 1966;** *Corn.* **896.)**

- IN. C. Li, B. E. Doody, and J. M. White, *J. Amer. Chem. SOC.,* **1957,79, 5859.**
- **3 T. R.** Kelly, Ph.D. Thesis, University of Glasgow, **1962.** H. L. Conley and R. B. Martin, *J. Phys. Chem.,* **1965, 69, 2923.**
-
- C. G. Swain, *J. Amer. Chem. SOC.,* **1944,** *66,* **1696.**
-
- *6* R. P. Bell and F. J. Lindars, *J. Chem. SOC.,* **1954, 4601.** *⁶*R. W. Hay, L. J. Porter and P. J. Morris, *AustraZ. J. Chem.,* **1966, 19, 1197.**